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INTRODUCTION AUGMENTING TRANSFERRED REPRESENTATIONS RESULTS

DATA AUGMENTATION IN FEATURE SPACE:

DATA AUGMENTATION IN INPUT SPACE:

• MAGNIFY: a variation of window slicing [2], we randomly slice windows between 40% and 80%
of the original time series, but always from the fixed end.

• JITTER: Gaussian noise with μ= 0 and standard deviation 𝜎 = 0.05 is added [3].
• POOL: Reduces the temporal resolution without changing the length of the time series by

averaging a pooling window.
• TIME WARP: time intervals between samples are distorted based on a random smooth warping

curve by cubic spline with four knots at random magnitude [3].

• INTERPOLATION [1]: for each sample, we find its K intra-class nearest neighbors in feature space 
and for each pair a new vector is generated using:

• EXTRAPOLATION: similarly, we apply extrapolation to the feature space vectors:

• NOISE: Gaussian noise is generated with zero mean and per-element standard deviation 
calculated across all transformed vectors in the datasetLSTM 
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• Dataset: all constituent stocks of the S&P500 index,
from1990 to 2018.

• Original task: binary classification, above daily 
median (trend up) or below (trend down). Network: 
single layer LSTM with 25n, and a fully connected 
two-neuron output. 

• New task: trading rule with top K stocks labelled buy, 
bottom K stocks labelled sell and the rest as do nothing. 
Network: single layer LSTM (25n) fixed with a fully 
connected layer of {25,100} neurons and an output 
layer of 3. 

• Loss: we used the cross-entropy loss and incorporated 
a loss term that optimizes the average return, as 
follows:

Stock classification is a challenging task due to high
levels of noise and volatility of stocks returns.
• We show that using transfer learning can help, by pre-

training a model to extract universal features on the
full universe of stocks of the S&P500 index and then
transferring it to another model to directly learn a
trading rule.

• We propose the use of data augmentation on the
feature space defined as the output of a pre-trained
model (i.e., augmenting the aggregated time-series
representation) and compare this approach the
standard augmentation in the input space.

• We test our model by building the learned trading
rule and calculate profitability considering transaction
fees.

• Transferred models present more than double the
risk-adjusted returns than their counterparts and
augmentation methods on the feature space leads to
20% increase in risk-adjusted return compared to a
transferred model without augmentation.
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• Ann ret and vol: annualized return and annualized volatility.
• Information Ratio (IR): ratio between excess return (portfolio 

returns minus benchmark returns) and tracking error (standard 
deviation of excess returns).

• Downside information ratio (DIR) ratio between excess return and 
the down-side risk (D. Risk: variability of under-performance 
below the benchmark), that differentiates harmful volatility from 
total overall volatility. 


